Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Neurotoxicol ; 11: 177-208, 2024 May.
Article in English | MEDLINE | ID: mdl-38741945

ABSTRACT

The gut microbes perform several beneficial functions which impact the periphery and central nervous systems of the host. Gut microbiota dysbiosis is acknowledged as a major contributor to the development of several neuropsychiatric and neurological disorders including bipolar disorder, depression, anxiety, Parkinson's disease, Alzheimer's disease, attention deficit hyperactivity disorder, and autism spectrum disorder. Thus, elucidation of how the gut microbiota-brain axis plays a role in health and disease conditions is a potential novel approach to prevent and treat brain disorders. The zebrafish (Danio rerio) is an invaluable vertebrate model that possesses conserved brain and intestinal features with those of humans, thus making zebrafish a valued model to investigate the interplay between the gut microbiota and host health. This chapter describes current findings on the utility of zebrafish in understanding molecular mechanisms of neurotoxicity mediated via the gut microbiota-brain axis. Specifically, it highlights the utility of zebrafish as a model organism for understanding how anthropogenic chemicals, pharmaceuticals and bacteria exposure affect animals and human health via the gut-brain axis.

2.
Neurosci Biobehav Rev ; : 105715, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734195

ABSTRACT

Obsessive-compulsive disorder (OCD) is a chronic and debilitating illness that has been considered a polygenic and multifactorial disorder, challenging effective therapeutic interventions. Although invaluable advances have been obtained from human and rodent studies, several molecular and mechanistic aspects of OCD etiology are still obscure. Thus, the use of non-traditional animal models may foster innovative approaches in this field, aiming to elucidate the underlying mechanisms of disease from an evolutionary perspective. The zebrafish (Danio rerio) has been increasingly considered a powerful organism in translational neuroscience research, especially due to the intrinsic features of the species. Here, we outline target mechanisms of OCD for translational research, and discuss how zebrafish-based models can contribute to explore neurobehavioral aspects resembling those found in OCD. We also identify possible advantages and limitations of potential zebrafish-based models, as well as outline future directions in both etiological and therapeutic research. Lastly, we reinforce the use of zebrafish as a promising tool to unravel the biological bases of OCD, as well as novel pharmacological therapies in the field.

3.
Article in English | MEDLINE | ID: mdl-38325745

ABSTRACT

Functional changes in dopamine transporter (DAT) are related to various psychiatric conditions, including bipolar disorder (BD) symptoms. In experimental research, the inhibition of DAT induces behavioral alterations that recapitulate symptoms found in BD patients, including mania and depressive mood. Thus, developing novel animal models that mimic BD-related conditions by pharmacologically modulating the dopaminergic signaling is relevant. The zebrafish (Danio rerio) has been considered a suitable vertebrate system for modeling BD-like responses, due to the well-characterized behavioral responses and evolutionarily conservation of the dopaminergic system of this species. Here, we investigate whether GBR 12909, a selective inhibitor of DAT, causes neurobehavioral alterations in zebrafish similar to those observed in BD patients. Behaviors were recorded after a single intraperitoneal (i.p.) administration of GBR 12909 at different doses (3.75, 7.5, 15 and 30 mg/kg). To observe temporal effects on behavior, swim path parameters were measured immediately after the administration period during 30 min. Locomotion, anxiety-like behavior, social preference, aggression, despair-like behavior, and oxidative stress-related biomarkers in the brain were measured 30 min post administration. GBR 12909 induced prominent effects on locomotor activity and vertical exploration during the 30-min period. Hyperactivity was observed in GBR 30 group after 25 min, while all doses markedly reduced vertical drifts. GBR 12909 elicited hyperlocomotion, anxiety-like behavior, decreased social preference, aggression, and induced depressive-like behavior in a behavioral despair task. Depending on the dose, GBR 12909 also decreased SOD activity and TBARS levels, as well as increased GR activity and NPSH content. Collectively, our novel findings show that a single GBR 12909 administration evokes neurobehavioral changes that recapitulate manic- and depressive-like states observed in rodents, fostering the use of zebrafish models to explore BD-like responses in translational neuroscience research.


Subject(s)
Mania , Zebrafish , Animals , Humans , Behavior, Animal , Brain , Dopamine Plasma Membrane Transport Proteins/genetics , Oxidative Stress , Phenotype
4.
Article in English | MEDLINE | ID: mdl-37971510

ABSTRACT

Nephropathy is the decline in kidney function. A promising treatment for numerous types of illness is using natural materials as natural chemical compounds. The inquiry was conducted to investigate cannabidiol (CBD) potential for renal syndrome protection. The five equal groups of fifty male Sprague-Dawley rats weighing 150 ± 25 g each were designed; group I received distilled water orally, while group II got an intraperitoneal injection of doxorubicin (18 mg/kg bwt). Group III received CBD (26 mg/kg bwt) orally, while group IV received 1 ml of CBD (26 mg/kg bwt) and group V received trimetazidine (10 mg/kg bwt), in addition to a single intraperitoneal dose of doxorubicin (18 mg/kg bwt) on the 11th day for both groups (IV, V). The administration of CBD (26 mg/kg bwt) led to a noticeable improvement in oxidative stress parameters (SOD and GSH) in rats by significantly lowering enzyme activity (ALT and AST), as well as serum creatinine and urea, IL-6, and MDA, confirming the anti-inflammatory accuracy of CBD linked to significant lowering to IL6R DNA frequency concentration in line with histopathology results. As a result of its anti-inflammatory and antioxidant capabilities, cannabidiol may have protective quality, and CBD medication could be related to controlling renal problems.

6.
Environ Toxicol Pharmacol ; 100: 104135, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37116629

ABSTRACT

This study aimed to elucidate if the toxicity of perfluorooctanoic acid (PFOA), an emerging persistent organic contaminant, is reversible or not in adult male and female Nauphoeta cinerea. Both sexes of Nauphoeta cinerea were separately exposed to 0, 1 and 5 mg/L PFOA in drinking water for 21 consecutive days. PFOA-exposed Nauphoeta cinerea exhibited significant deficits in the locomotor and exploratory capabilities with concomitant increase in anxiogenic behaviors which persisted after cessation of PFOA exposure. Moreover, PFOA-induced decrease in acetylcholinesterase activity persisted after cessation of PFOA exposure in both insects' sexes. Catalase and superoxide dismutase activities were increased in the midgut but restored to control following cessation of PFOA exposure. The increased reactive oxygen and nitrogen species, nitric oxide and hydrogen peroxide levels persisted in the head whereas they were abated in the midgut after cessation of PFOA exposure. However, PFOA-induced persistent increase in lipid peroxidation and protein carbonyl levels in the head and midgut of insects. Collectively, PFOA exposure elicited persistent neurobehavioral and oxidative injury similarly in both sexes of adult Nauphoeta cinerea during this investigation.


Subject(s)
Cockroaches , Fluorocarbons , Animals , Female , Male , Acetylcholinesterase/metabolism , Oxidative Stress , Fluorocarbons/toxicity , Caprylates/toxicity
7.
Environ Adv ; 82022 Jul.
Article in English | MEDLINE | ID: mdl-35992224

ABSTRACT

Environmental pollution is a global concern because of its associated risks to human health and ecosystem. The bio-monitoring of environmental health has attracted much attention in recent years and efforts to minimize environmental contamination as well as to delineate toxicological mechanisms related to toxic exposure are essential to improve the health conditions of both humans and animals. This review aims to substantiate the need and advantages in utilizing cockroaches as a complementary, non-mammalian model to further understand the noxious impact of environmental contaminants on humans and animals. We discuss recent advances in neurotoxicology, immunotoxicology, reproductive and developmental toxicology, environmental forensic entomotoxicology, and environmental toxicology that corroborate the utility of the cockroach (Periplaneta americana, Blaptica dubia, Blattella germanica and Nauphoeta cinerea) in addressing toxicological mechanisms as well as a sensor of environmental pollution. Indeed, recent improvements in behavioural assessment and the detection of potential biomarkers allow for the recognition of phenotypic alterations in cockroaches following exposure to toxic chemicals namely saxitoxin, methylmercury, polychlorinated biphenyls, electromagnetic fields, pharmaceuticals, polycyclic aromatic hydrocarbon, chemical warfare agents and nanoparticles. The review provides a state-of-the-art update on the current utility of cockroach models in various aspects of toxicology as well as discusses the potential limitations and future perspectives.

8.
J Biochem Mol Toxicol ; 35(5): e22741, 2021 May.
Article in English | MEDLINE | ID: mdl-33592137

ABSTRACT

The present study examined the influence of selenium on ciprofloxacin-mediated reproductive dysfunction in rats. The research design consisted of five groups of eight animals each. The rats were administered 135 mg/kg body weight of ciprofloxacin per se or simultaneously with selenium at 0.25 and 0.5 mg/kg for 15 uninterrupted days. Antioxidant and inflammatory indices were assayed using the testes, epididymis, and hypothalamus of the animals after sacrifice. Results revealed that ciprofloxacin treatment per se interfered with the reproductive axis as demonstrated by diminished serum hormonal levels, sperm quality, and enzymatic indices of testicular function, which were, however, abrogated following selenium co-treatment. Besides this, administration of selenium attenuated the depletion of glutathione level, inhibition of catalase, superoxide dismutase, glutathione-S-transferase and glutathione peroxidase activities with a concomitant reduction in reactive oxygen and nitrogen species, and lipid peroxidation in ciprofloxacin-treated in rats. Selenium treatment also mitigated ciprofloxacin-mediated elevation in nitric oxide level and of myeloperoxidase activity as well as histological lesions in the animals. Overall, selenium attenuated impairment in the male reproductive axis due to ciprofloxacin treatment through abatement of inflammation and oxidative stress in rats.


Subject(s)
Ciprofloxacin/pharmacology , Hypothalamo-Hypophyseal System/metabolism , Reproduction/drug effects , Selenium/adverse effects , Testis/metabolism , Animals , Hypothalamo-Hypophyseal System/pathology , Male , Rats , Rats, Wistar , Selenium/pharmacology , Testis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...